## INDIAN SCHOOL AL WADI AL KABIR

Post Mid-Term Marking Scheme (2023-24)
Sub: MATHEMATICS (Subject Code 041)

Max Marks: 80
Time:3 hours

## Tine:3 hous

Date: 03/12/2023
(SET 1)

## General Instructions:

1. This question paper has 5 sections- $A, B, C, D$ and $E$.
2. Section A-PART-1 (MCQ) comprises of 18 questions of 1 mark each
3. Section A- PART-2 (Assertion and Reason) comprises of 2 questions of 1 mark each.
4. Section B- (Short answer) comprises of 5 questions of 2 mark each.
5. Section $C$ - (Long answer) comprises of 6 questions of 3 marks each.
6. Section D- (Long answer) comprises of 4 questions of 5 marks each.
7. Section $E$ - comprises of 3 Case study-based questions of 4 marks each with sub parts of the values 1,1 and 2 marks each respectively.
8. All Questions are compulsory. However, an internal choice has been provided for certain questions.

## Section A

PART-1 MCQ (1 mark each)

| Q.1. | The coefficient of $x$ in the expansion of $(x+3)^{3}$ is |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A |  | B | C |  | D | 27 |
| Q.2. | The points whose abscissa and ordinate have different signs will be in: |  |  |  |  |  |  |
|  | A | II and IV quadrant | B | C |  | D |  |
| Q. 3. | On dividing $6 \sqrt{27}$ by $2 \sqrt{3}$, we get: |  |  |  |  |  |  |
|  | A |  | B | C | 9 | D |  |


| Q. 4. | Degree of the zero polynomial is |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A |  | B | Not defined | C |  | D |  |
| Q. 5. | The value of $(4)^{\frac{3}{2}} \times(4)^{\frac{5}{2}}$ is |  |  |  |  |  |  |  |
|  | A | 256 | B |  | C |  | D |  |
| Q. 6. | Euclid stated that "the whole is greater than the part" in the form of: |  |  |  |  |  |  |  |
|  | A |  | B |  | C | Axiom | D |  |
| Q. 7. | Which of the following is an irrational number? |  |  |  |  |  |  |  |
|  | A |  | B |  | C |  | D | $\sqrt{5}+\sqrt{9}$ |
| Q. 8. | In a frequency distribution table, the class interval 140 - 150 has a frequency $\mathbf{1 5}$. Then the point on the frequency polygon corresponding to this is $\qquad$ |  |  |  |  |  |  |  |
|  | A |  | B | $(145,15)$ | C |  | D |  |
| Q. 9. | In how many chapters did Euclid divide his famous treatise "The Elements"? |  |  |  |  |  |  |  |
|  | A | 13 | B |  | C |  | D |  |
| Q.10. | The perpendicular distance of the point $\mathrm{P}(4,3)$ from x -axis is: |  |  |  |  |  |  |  |
|  | A |  | B |  | C | 3 | D |  |
| Q.11. | If $\mathrm{AB}=\mathrm{QR}, \mathrm{BC}=\mathrm{PR}$ and $\mathrm{CA}=\mathrm{PQ}$, then: |  |  |  |  |  |  |  |
|  | A |  | B |  | C |  | D | $\Delta \mathrm{CBA} \cong \triangle \mathrm{PRQ}$ |
| Q.12. | Two angles which are supplementary are in the ratio $2: 7$. Then the measures of angles are: |  |  |  |  |  |  |  |
|  | A | $40^{\circ}, 140^{\circ}$ | B |  | C |  | D |  |
| Q.13. | If the class marks of a continuous frequency distribution are $10,20,30,40 \ldots$, then the class interval representing the class mark 30 is $\qquad$ |  |  |  |  |  |  |  |
|  | A |  | B | $25-35$ | C |  | D |  |



| Q. 20 | (a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A). |
| :---: | :---: |
|  | Section B S.A.(2 mark each) |
| Q.21. | Sol. a) Let $p(x)=3 x^{3}+x^{2}-\mathbf{2 0 x}+12$. $x-2=0 \Rightarrow x=2$ <br> By factor theorem, <br> $(x-2)$ is a factor of $p(x)$, if $p(2)=0$. $\begin{align*} p(2) & =3(2)^{3}+(2)^{2}-20 \times 2+12  \tag{1m}\\ & =24+4-40+12 \\ & =-12+12=0 \tag{1m} \end{align*}$ <br> Hence $(x-2)$ is a factor of $\left(3 x^{3}+x^{2}-20 x+12\right)$. <br> OR <br> Sol. b) Given : $p(x)=x^{2}-k x+2 k$ <br> Since $(x-4)$ is a factor of the given polynomial $p(x)$, then $p(4)=0$ $\begin{align*} & \Rightarrow(4)^{2}-k(4)+2 k=0  \tag{1m}\\ & \Rightarrow 16-4 k+2 k=0 \\ & \Rightarrow-2 k=-16 \\ & \Rightarrow k=\frac{-16}{-2}=8 \tag{1m} \end{align*}$ |
| Q.22. | Sol. <br> i. Number of teachers aged (45-50) - Number of teachers aged (20-25) $\begin{equation*} =5-4=1 \tag{1~m} \end{equation*}$ <br> ii. $\quad 30-35,6$ |
| Q.23. | Sol. $\quad 2 x=50$ <br> $2 x \div 2=50 \div 2$ (divide by 2 on both sides) $\begin{equation*} x=25 \tag{1m} \end{equation*}$ <br> Axiom: Things which are halves of the same things are equal to one another. |


| Q.24. | Sol. <br> i. The points identified by the coordinates $(11,5)-\mathrm{C}$ and $(3,5)-\mathrm{A} \quad(1 / 2+1 / 2)$ <br> ii. Find the sum of abscissa of point B and abscissa of point D . <br> Abscissa of $B=7$ <br> Ordinate of $D=1$ <br> Sum $=7+1=8$. <br> (1m) |
| :---: | :---: |
| Q.25. | a) Number line <br> perpendicular + locating $\sqrt{5}$ on number line <br> (1m) <br> OR <br> Sol. b) Let $x=1 . \overline{28}$ $\begin{equation*} x=1.282828 \ldots \tag{i} \end{equation*}$ <br> Multiply equation (i) by 100 $\begin{equation*} 100 x=128.2828 \ldots \tag{ii} \end{equation*}$ <br> ( $1 / 2 \mathrm{~m}$ ) <br> Subtracting equation (i) from equation (ii) $\begin{align*} & 100 x-x=128.282828 \ldots-1.282828 \ldots \\ & \therefore 99 x=127  \tag{1m}\\ & \Rightarrow x=\frac{127}{99} \end{align*}$ |
|  | Section C S.A.(3 mark each) |
| Q.26. | Sol. a) Given: An isosceles triangle ABC , where $\mathrm{AB}=\mathrm{AC}(1 / 2 \mathrm{~m})$ <br> To prove: $\angle B=\angle C$ <br> Construction: Draw the bisector of $\angle \mathrm{A}$ <br> Let D be the point of intersection of this bisector of $\angle A$ and BC . <br> Therefore, by construction $\angle B A D=\angle C A D$. <br> Proof: |


|  | In $\triangle B A D$ and $\triangle C A D$, <br> $\mathrm{AB}=\mathrm{AC}$ (Given) <br> $\angle \mathrm{BAD}=\angle \mathrm{CAD}$ (By construction) <br> $\mathrm{AD}=\mathrm{AD}($ Common side in both triangle $)$ <br> So, $\triangle \mathrm{BAD} \cong \triangle \mathrm{CAD}$ (By SAS rule) <br> (2m) <br> $\therefore \angle A B D=\angle A C D \quad(\mathrm{CPCT})$ <br> So, $\angle B=\angle C$ <br> (1/2 m) <br> Hence proved. <br> OR <br> Sol. b) Given : $\angle B A D=\angle A B E$ $\angle E P A=\angle D P B$ <br> To prove: (i) $\triangle D A P \cong \triangle E B P$ <br> (ii) $\mathrm{AD}=\mathrm{BE}$. <br> Proof: (i) In $\triangle$ DAP and $\Delta E B P$, ```AP}=\textrm{BP}(\textrm{P}\mathrm{ is the mid-point of AB} \angle1= \angle2 (given) \angle3=\angle4 (given) \angle3+\angle5=\angle4+\angle5 \angleAPD = \angle BPE \therefore\Delta DAP}\cong\Delta\textrm{EBP}(\textrm{ASA}\mathrm{ congruence) (2 1/2 m) (ii) }\textrm{AD}=\textrm{BE (CPCT) (1/2 m)``` |
| :---: | :---: |
| Q.27. | Sol. a) $y=180^{\circ}-57^{\circ}($ co interior angles, $\mathrm{AB} \\| E F)$ $\begin{equation*} =123^{\circ} \tag{1m} \end{equation*}$ $\begin{equation*} z=180^{\circ}-145^{\circ}(\text { linear pair })=35^{\circ} \tag{1m} \end{equation*}$ |


|  | $\begin{align*} & x+22^{\circ}=57^{\circ}(\text { alternate interior angles, } \mathrm{AB} \\| C D) \\ & x=57^{\circ}-22^{\circ}=35^{\circ} \tag{1~m} \end{align*}$ <br> OR <br> Sol. b) Given, $P O \perp A B$. $\Rightarrow \angle P O A=90^{\circ}$ <br> Let the angles $x=a, y=3 a, z=5 a$ $\text { so, } \begin{align*} a+3 a+5 a & =90^{\circ} \\ \Rightarrow 9 a & =90^{\circ} \\ \Rightarrow a & =\frac{90}{9}=10^{\circ} \tag{11/2~m} \end{align*}$ $\begin{align*} & \therefore x=10^{\circ} \\ & y=3 \times 10^{\circ}=30^{\circ} \\ & z=5 \times 10^{\circ}=50^{\circ} \tag{11/2~m} \end{align*}$ | $\xrightarrow[B]{\rightarrow}$ |
| :---: | :---: | :---: |
| Q.28. | Sol. Axis - ( $1 / 2 \mathrm{~m}$ ) <br> Plotting the points $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}-(1 / 2 \mathrm{~m}$ each $)$ <br> Identify PQRS - Rectangle - ( $1 / 2 \mathrm{~m}$ ) |  |
| Q.29. | Sol. Each postulate- 1 m . $\quad(1 m \times 3=3 m)$ |  |
| Q.30. | Sol. $S=\frac{200+240+360}{2}=400 \mathrm{~m}$ $\begin{align*} & (S-a)=(400-200)=200 m \\ & (S-b)=(400-240)=160 m \\ & (S-c)=(400-360)=40 m \tag{1m} \end{align*}$ $\begin{align*} \text { Area } & =\sqrt{S(S-a)(S-b)(S-c)} \\ & =\sqrt{400 \times 200 \times 160 \times 40} \\ & =16000 \sqrt{2} \mathrm{~m}^{2} \tag{1~m} \end{align*}$ <br> Cost of ploughing $1 \mathrm{~m}^{2}=₹ 5$. <br> Cost of ploughing $16000 \sqrt{2} \mathrm{~m}^{2}=₹ 5 \times 16000 \sqrt{2}=₹ 80,000 \sqrt{2}$ | (1m) |


| Q.31. | Sol. Axis $(1 / 2 \mathrm{~m})$ <br>  Solutions + Plotting $(2 \mathrm{~m})$ <br>  Joining points $(1 / 2 \mathrm{~m})$ |  |
| :---: | :---: | :---: |
|  | Section D <br> L.A.(5 mark each) |  |
| Q. 32. | Sol. a) $p(x)=x^{3}+x^{2}-4 x-4$ <br> factors of $(-4)= \pm 1, \pm 2, \pm 4$ <br> OR <br> Sol. <br> b) $p(2)=(2)^{4}-3(2)^{2}+2 \times 2+5$ <br> $=16-12+4+5=13$ <br> $p(1)=(1)^{4}-3(1)^{2}+2 \times 1+5$ <br> $=1-3+2+5=5$ <br> $p(-1)=(-1)^{4}-3(-1)^{2}+2 \times(-1)+5$ <br> $=1-3-2+5=1$ <br> $p(0)=(0)^{4}-3(0)^{2}+2 \times 0+5=5$ <br> $p(2)+p(1)+p(-1)-p(0)=13+5+1-5=14$ | ( $11 / 2 \mathrm{~m}$ ) <br> ( $11 / 2 \mathrm{~m}$ ) <br> ( $1 / 2 \mathrm{~m}$ ) <br> (1m) <br> ( $1 / 2 \mathrm{~m}$ ) <br> (1m) <br> (1m) <br> (1m) <br> (1m) <br> (1m) |



|  | $\therefore \triangle \mathrm{AMC} \cong \triangle \mathrm{BMD}($ By SAS congruence rule $)$ $\begin{equation*} \mathrm{AC}=\mathrm{BD}(\mathrm{By} \mathrm{CPCT}) \tag{2~m} \end{equation*}$ <br> (ii) $\quad \angle \mathrm{ACM}=\angle \mathrm{BDM}($ By CPCT from (i)) <br> (iii) In $\triangle \mathrm{DBC}$ and $\triangle \mathrm{ACB}$, $\mathrm{DB}=\mathrm{AC}(\text { Already proved in (i) })$ $\angle \mathrm{DBC}=\angle \mathrm{ACB}=90^{\circ}(\text { Given })$ $\mathrm{BC}=\mathrm{CB}(\text { Common })$ <br> $\therefore \Delta \mathrm{DBC} \cong \Delta \mathrm{ACB}$ (SAS congruence rule) <br> (iv) $\quad A B=D C($ By CPCT from (iii) ) |
| :---: | :---: |
| Q.35. | Sol. $\begin{align*} & \frac{\sqrt{11}-\sqrt{7}}{\sqrt{11}+\sqrt{7}} \times \frac{\sqrt{11}-\sqrt{7}}{\sqrt{11}-\sqrt{7}}=\frac{(\sqrt{11}-\sqrt{7})^{2}}{11-7}  \tag{1m}\\ &=\frac{(\sqrt{11})^{2}-2 \times \sqrt{11} \times \sqrt{7}+(\sqrt{7})^{2}}{4}=\frac{18-2 \sqrt{77}}{4} \tag{1m} \end{align*}$ $\begin{align*} \frac{\sqrt{11}+\sqrt{7}}{\sqrt{11}-\sqrt{7}} \times \frac{\sqrt{11}+\sqrt{7}}{\sqrt{11}+\sqrt{7}} & =\frac{(\sqrt{11}+\sqrt{7})^{2}}{11-7}  \tag{1m}\\ & =\frac{(\sqrt{11})^{2}+2 \times \sqrt{11} \times \sqrt{7}+(\sqrt{7})^{2}}{4}=\frac{18+2 \sqrt{77}}{4} \tag{1m} \end{align*}$ $\begin{equation*} \frac{\sqrt{11}-\sqrt{7}}{\sqrt{11}+\sqrt{7}}+\frac{\sqrt{11}+\sqrt{7}}{\sqrt{11}-\sqrt{7}}=\frac{18-2 \sqrt{77}}{4}+\frac{18+2 \sqrt{77}}{4}=\frac{18-2 \sqrt{77}+18+2 \sqrt{77}}{4}=\frac{36}{4}=9 \tag{1m} \end{equation*}$ |
|  | Section E <br> CASE STUDY BASED QUESTIONS (4 mark each) |
| Q.36. | CASE STUDY-1 <br> i. Let, the amount contributed by Lata $=₹ \boldsymbol{x}$ <br> the amount contributed by Meena $=₹ \mathbf{y}$ <br> Then amount contributed by Lata and Meena for Prime Minister's Relief Fund $=₹(x+y)$ <br> $\therefore$ The required linear equation is $\mathbf{x}+\mathbf{y}=\mathbf{2 4 0}$ <br> (1m) |

ii. We have, $\mathrm{x}+\mathrm{y}=240$
$x=124$,
then $y=240-124=116$
$\therefore$ the amount contributed by Meena is ₹ 116 .
iii.
a) $3 y=7$
$\Rightarrow 0 . x+3 y-7=0$ is in the form of $a x+b y+c=0$ where,

$$
\begin{equation*}
a=0, b=3, c=-7 \tag{1m}
\end{equation*}
$$

OR
b) $(2 k-3, k+2) \Rightarrow x=(2 k-3), y=k+2$
$2 x+3 y+15=0$
$\Rightarrow 2(2 k-3)+3(k+2)+15=0$
$\Rightarrow 4 k-6+3 k+6+15=0$
$\Rightarrow 7 k+15=0$
$\Rightarrow 7 k=-15$
$\Rightarrow k=\frac{-15}{7}$

## Q.37. CASE STUDY-II:

(i) a) $S=\frac{8+10+6}{2}=12 \mathrm{~cm}$

$$
\begin{align*}
& (s-a)=(12-8)=4 \mathrm{~cm} \\
& (s-b)=(12-10)=2 \mathrm{~cm} \\
& (s-c)=(12-6)=6 \mathrm{~cm} \tag{1m}
\end{align*}
$$

$$
\begin{align*}
\text { Area } & =\sqrt{S(S-a)(S-b)(S-c)} \\
& =\sqrt{12 \times 4 \times 2 \times 6}=24 \mathrm{~cm}^{2} \tag{1~m}
\end{align*}
$$



Therefore, area of the paper used for making each ear of the puppy $=24 \mathrm{~cm}^{2}$.

## OR

b) Let the sides of the triangle be,
$a=3 x, b=5 x, c=7 x$.
then $a+b+c=300 \Rightarrow 3 x+5 x+7 x=300 \mathrm{~cm}$
$\Rightarrow 15 x=300 \mathrm{~cm}$
$\Rightarrow x=\frac{300}{15}=20 \mathrm{~cm} \quad \therefore a=60 \mathrm{~cm}, b=100 \mathrm{~cm}, c=140 \mathrm{~cm}$

|  | Given, area $=5 \sqrt{3} \times$ perimeter $\begin{equation*} \Rightarrow \text { area }=5 \sqrt{3} \times 300=1500 \sqrt{3} \mathrm{~cm}^{2} \tag{1m} \end{equation*}$ <br> (ii) Semi-perimeter, $S=\frac{a+b+c}{2}=\frac{4+4+2}{2}=\frac{10}{2}=5 \mathrm{~cm}$ <br> (iii) Area of the triangle $=18 \mathrm{~cm}^{2}$ <br> Let the length of each equal sides be ' $a$ ' <br> Area of the triangle $=\frac{1}{2} \times b \times h$ $\begin{aligned} & \Rightarrow 18=\frac{1}{2} \times \mathrm{a} \times \mathrm{a} \\ & \Rightarrow 18=\frac{1}{2} \times a^{2} \\ & \Rightarrow 36=a^{2} \Rightarrow \mathrm{a}=6 \end{aligned}$ <br> Length of each equal sides $=6 \mathrm{~cm}$ |
| :---: | :---: |
| Q.38. | CASE STUDY-III <br> (i) a) Using the identity, $(\mathrm{a}-\mathrm{b})^{3}=(a)^{3}-3(a)^{2} b+3 a(b)^{2}-(b)^{3}$ $\begin{align*} (4 \mathrm{a}-2 \mathrm{~b})^{3} & =(4 a)^{3}-3 \times(4 a)^{2} \times 2 b+3 \times 4 a \times(2 b)^{2}-(2 b)^{3}  \tag{1~m}\\ & =64(a)^{3}-3 \times 16(a)^{2} \times 2 b+3 \times 4 a \times 4(b)^{2}-(2 b)^{3} \\ & =64 a^{3}-96 a^{2} b+48 a b^{2}-8 b^{3} \tag{1m} \end{align*}$ <br> OR <br> b) Using the identity, $(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 a c$ $\begin{gather*} (x+y+z)^{2}=(x)^{2}+(y)^{2}+z^{2}+(2 \times x \times y)+(2 \times y \times z)+(2 \times x \times z) \\ (9)^{2}=x^{2}+y^{2}+z^{2}+2[x y+y z+x z]  \tag{1m}\\ (9)^{2}=x^{2}+y^{2}+z^{2}+2 \times 7 \\ x^{2}+y^{2}+z^{2}=(9)^{2}-2 \times 7 \\ =81-14 \\ =67 \tag{1m} \end{gather*}$ <br> (ii) Using identity, $x^{2}-y^{2}=(x+y)(x-y)$ $\begin{equation*} \frac{81}{16} x^{2}-\frac{4}{25} y^{2}=\left(\frac{9}{4} x\right)^{2}-\left(\frac{2}{5} y\right)^{2}=\left(\frac{9}{4} x+\frac{2}{5} y\right)\left(\frac{9}{4} x-\frac{2}{5} y\right) \tag{1m} \end{equation*}$ <br> (iii) $\begin{align*} & \text { Let } x=10, y=-7, z=-3 \\ & x+y+z=10+(-7)+(-3)=0 \\ & \therefore x^{3}+y^{3}+z^{3}=3 x y z \\ & \Rightarrow(10)^{3}+(-7)^{3}+(-3)^{3}=3 \times 10 \times-7 \times-3=630 \tag{1m} \end{align*}$ |

