

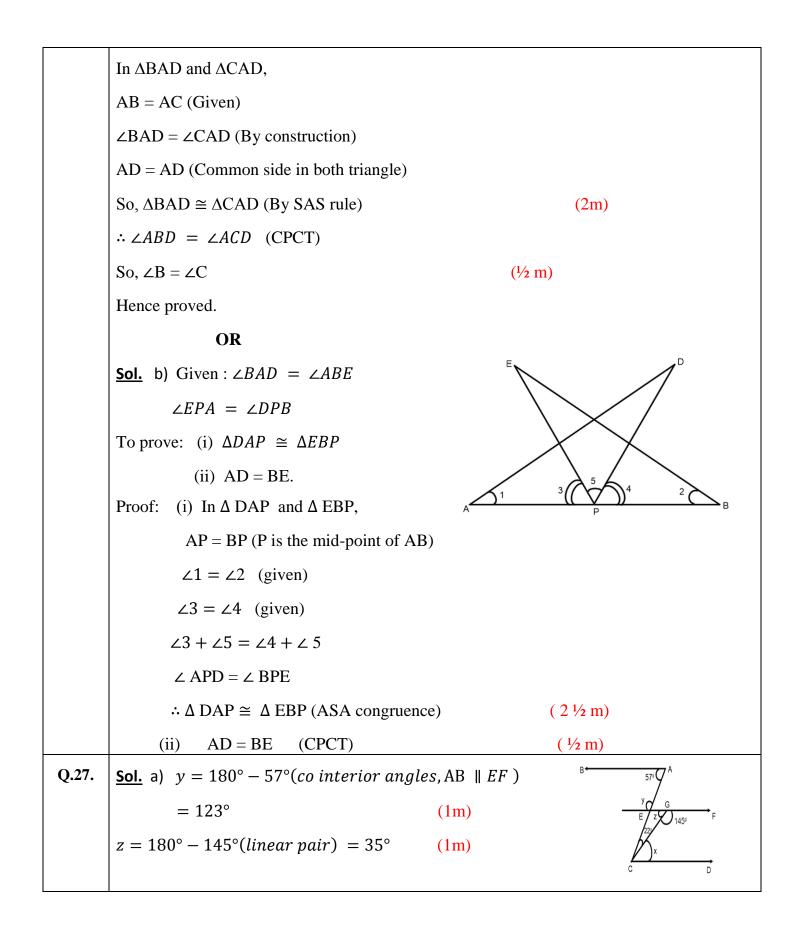
INDIAN SCHOOL AL WADI AL KABIR

Post Mid-Term Marking Scheme (2023-24)

Class: IX Date: 03/12/2023 Sub: MATHEMATICS (Subject Code 041) (SET 1) Max Marks: 80 Time:3 hours

General Instructions:

- 1. This question paper has 5 sections- A, B, C, D and E.
- 2. Section A- PART-1 (MCQ) comprises of 18 questions of 1 mark each
- 3. Section A- PART-2 (Assertion and Reason) comprises of 2 questions of 1 mark each.
- 4. Section B- (Short answer) comprises of 5 questions of 2mark each.
- 5. Section C- (Long answer) comprises of 6 questions of 3 marks each.
- 6. Section D- (Long answer) comprises of 4 questions of 5 marks each.
- 7. Section E comprises of 3 Case study-based questions of 4 marks each with sub parts of the values 1, 1 and 2 marks each respectively.
- 8. All Questions are compulsory. However, an internal choice has been provided for certain questions.


	Section A PART-1 MCQ (1 mark each)								
Q.1.	The	The coefficient of x in the expansion of $(x + 3)^3$ is							
	A		B	С		D	27		
Q.2.	The	points whose a	bscis	ssa and ordinate have differ	ent signs will be	in:			
	A	II and IV quadrant	В	С		D			
Q. 3.	On dividing $6\sqrt{27}$ by $2\sqrt{3}$, we get:								
	Α		B	С	9	D			

Q. 4.	Degree of the zero polynomial is							
	A		B	Not defined	С		D	
Q. 5.	The value of $(4)^{\frac{3}{2}} \times (4)^{\frac{5}{2}}$ is							
	Α	256	B		С		D	
Q. 6.	Euclie	d stated that "th	ne w	hole is greater than t	he par	t" in the form of:		
	Α		B		С	Axiom	D	
Q. 7.	Whick	h of the followi	ing	is an irrational numbe	er?			
	Α		B		С		D	$\sqrt{5} + \sqrt{9}$
Q. 8.				on table, the class introlygon corresponding			reque	ency 15. Then the
	Α		B	(145,15)	С		D	
Q. 9.	In hov	w many chapter	rs d	id Euclid divide his fa	amous	treatise "The El	emen	ts"?
	Α	13	B		С		D	
Q.10.	The p	erpendicular di	star	nce of the point P(4,3) from	x-axis is:	Γ	
	Α		B		С	3	D	
Q.11.	If AB	= QR, BC $=$ P	R a	nd $CA = PQ$, then:				
	Α		B		С		D	$\Delta CBA \cong \Delta PRQ$
Q.12.	Two a	angles which ar	e si	applementary are in the	ne rati	o 2: 7. Then the	meas	ures of angles are:
	A	40°, 140°	B		С		D	
Q.13.				ontinuous frequency of class mark 30 is	listrib	ution are 10, 20, 	30, 4	0, then the class
	Α		B	25 - 35	С		D	

Q.14.	In the given figure, the congruency criterion used in proving $\triangle ACB \cong \triangle ADB$ is:								
	A	SAS	B		С		D		
Q.15.	The	e length of each	side	of an equilateral trian	gle ha	ving an area of 9	$\sqrt{3} c$	m^2 is	
	A		B	6 cm	С		D		
Q.16.	The	e linear equation	4x	-5y = 12 has					
	A		B		С	infinitely many solutions	D		
Q.17.		In the given figure, if $\angle BOC = 4y$ and $\angle AOC = 6y + 30^{\circ}$. What will be the value of y to make AOB a straight line? $A \longleftarrow G \longrightarrow B$							
	A	15°	В		С		D		
Q.18.		If 9 is the class mark and 6 is the lower limit of a class in a continuous frequency distribution, then the upper limit of the class is							
	A		B		С		D	12	
Q.19	(c)	Assertion (A) is	true	but Reason (R) is fals	se.				

Q.20	(a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct e Assertion (A).	explanation of
	Section B S.A.(2 mark each)	
Q.21.	Sol. a) Let $p(x) = 3x^3 + x^2 - 20x + 12$.	
-	$x - 2 = 0 \Rightarrow x = 2$	
	By factor theorem,	
	(x-2) is a factor of $p(x)$, if $p(2) = 0$.	
	$p(2) = 3(2)^3 + (2)^2 - 20 \times 2 + 12$	(1 <i>m</i>)
	= 24 + 4 - 40 + 12	
	= -12 + 12 = 0	(1m)
	Hence $(x - 2)$ is a factor of $(3x^3 + x^2 - 20x + 12)$.	
	OR	
	<u>Sol.</u> b) Given : $p(x) = x^2 - kx + 2k$	
	Since $(x - 4)$ is a factor of the given polynomial $p(x)$, then $p(4) = 0$	
	$\Rightarrow (4)^2 - k(4) + 2 k = 0$	(1 <i>m</i>)
	$\Rightarrow 16 - 4k + 2k = 0$	
	$\Rightarrow -2k = -16$	
	$\Rightarrow -2k = -16$ $\Rightarrow k = \frac{-16}{-2} = 8$	(1m)
Q.22.	Sol.i.Number of teachers aged (45-50) – Number of teachers aged (20-25)	
	= 5 - 4 = 1	(1m)
Q.23.	ii. $30 - 35, 6$ Sol. $2x = 50$	(1m)
Q.23.	$2x \div 2 = 50 \div 2$ (divide by 2 on both sides)	/1 \
	x = 25. Axiom: Things which are halves of the same things are equal to one another.	(1m) (1m)

Q.24.	Sol.	
	i. The points identified by the coordinates (1	$(1,5) - C$ and $(3,5) - A$ $(\frac{1}{2} + \frac{1}{2})$
	ii. Find the sum of abscissa of point B and ab	
	Abscissa of $B = 7$	
	Ordinate of D = 1	
	Sum = 7 + 1 = 8. a) Number line (1m)	(1m)
Q.25.		
	perpendicular + locating $\sqrt{5}$ on number line	(1m)
	OR	
	<u>Sol.</u> b) Let $x = 1.\overline{28}$	
	$x = 1.282828 \dots$ (i)	
	Multiply equation (i) by 100	
	$100x = 128.2828 \dots$ (ii)	(¹ / ₂ m)
	Subtracting equation (i) from equation (ii)	
	100x - x = 128.282828 1.282828	
	$\therefore 99x = 127$	(1m)
	$\Rightarrow x = \frac{127}{99}$	(¹ / ₂ m)
	Section	С
	S.A.(3 mark	each)
Q.26.	Sol. a) Given: An isosceles triangle ABC, where	$e AB = AC (\frac{1}{2} m)$
	To prove: $\angle B = \angle C$	Ã.
	Construction: Draw the bisector of ∠A	
	Let D be the point of intersection of this bisector	of $\angle A$ and BC.
	Therefore, by construction $\angle BAD = \angle CAD$.	
	Proof:	B D C

	$x + 22^\circ = 57^\circ$ (alternate interior angle	es, AB <i>CD</i>)							
	$x = 57^{\circ} - 22^{\circ} = 35^{\circ}$	(1m)							
	OR								
	<u>Sol.</u> b) Given, $PO \perp AB$.	\uparrow \ddagger_P							
	$\Rightarrow \angle POA = 90^{\circ}$								
	Let the angles $x = a$, $y = 3a$, $z = 5a$	R							
	$so, a + 3a + 5a = 90^{\circ}$								
	$\Rightarrow 9a = 90^{\circ}$								
	$\Rightarrow a = \frac{90}{9} = 10^{\circ}$	(1 ½ m)							
	$\therefore x = 10^{\circ}$								
	$y = 3 \times 10^\circ = 30^\circ$								
	$z = 5 \times 10^{\circ} = 50^{\circ}$	(1 ½ m)							
Q.28.	Sol. Axis – $(\frac{1}{2} \text{ m})$ Plotting the points P, Q, R, S – $(\frac{1}{2} \text{ m each})$								
	Identify PQRS – Rectangle - (¹ / ₂ m)								
Q.29.	Sol. Each postulate- 1m. $(1m \times 3)$	= 3m)							
Q.30.	<u>Sol.</u> $S = \frac{200+240+360}{2} = 400 \text{ m}$								
	(S-a) = (400 - 200) = 200 m								
	(S-b) = (400 - 240) = 160 m,								
	(S - c) = (400 - 360) = 40 m	(1m)							
	$Area = \sqrt{S(S-a)(S-b)(S-c)}$								
	$= \sqrt{400 \times 200 \times 160 \times 40}$								
	$= 16000\sqrt{2} m^2$	(1m)							
	Cost of ploughing $1 m^2 = \gtrless 5$.								
	Cost of ploughing $16000\sqrt{2} m^2 = ₹ 5 \times 10^{10}$	$6000\sqrt{2} = 30,000\sqrt{2}$ (1m)							

Q.31.	<u>Sol.</u> Axis (½ m)	
	Solutions + Plotting (2m)	
	Joining points (1/2 m)	
	Section D	
	L.A.(5 mark each)	
Q. 32.	Sol. a) $p(x) = x^3 + x^2 - 4x - 4$	
	<i>factors of</i> $(-4) = \pm 1, \pm 2, \pm 4$	
	$p(-1) = (-1)^3 + (-1)^2 - 4 \times (-1) - 4 = 0$	
	$\therefore p(-1) = 0,$	(1 ½ m)
	\Rightarrow (x + 1) is a factor of p(x)	
	-1 1 1 -4 -4 0 -1 0 4	
	1 0 -4 0 \longrightarrow remainder	(1 ½ m)
	$x^2 - 4$	(¹ / ₂ m)
	$p(x) = (x+1)(x^2-4)$	
	$x^2 - 4 = (x + 2)(x - 2)$	(1m)
	$\Rightarrow p(x) = (x+1)(x+2)(x-2)$	(¹ / ₂ m)
	OR	
	<u>Sol.</u> b) $p(2) = (2)^4 - 3(2)^2 + 2 \times 2 + 5$	
	= 16 - 12 + 4 + 5 = 13	(1m)
	$p(1) = (1)^4 - 3(1)^2 + 2 \times 1 + 5$	
	= 1 - 3 + 2 + 5 = 5	(1m)
	$p(-1) = (-1)^4 - 3(-1)^2 + 2 \times (-1) + 5$	
	= 1 - 3 - 2 + 5 = 1	(1m)
	$p(0) = (0)^4 - 3(0)^2 + 2 \times 0 + 5 = 5$	(1m)
	p(2) + p(1) + p(-1) - p(0) = 13 + 5 + 1 - 5 = 14	(1m)

Q. 33.	Sol. a) Histogram – (3m), frequency polygon- (2m)								
	OR								
	b)								
	Class interval	Frequency	Class width	Adjusted frequency					
	0-10	6	10	$\frac{10}{10} \times 6 = 6$					
	10-30	28	20	$\frac{10}{20} \times 28 = 14$					
	30-60	12	30	$\frac{10}{30} \times 12 = 4$					
	60-70	20	10	$\frac{10}{10} \times 20 = 20$					
	Table –(2m), Hist	ogram – <mark>(3m)</mark>							
Q.34.	Sol.Given: $\angle C = 90^\circ$, $\angle B = 90^\circ$ M is the mid-point of hypotenuse ABDM = CM.To prove:								
	(i) $\triangle AMC \cong \triangle BMD.$ (ii) $\angle ACM = \angle BDM.$ (iii) $\triangle DBC \cong \triangle ACB.$ (iv) $AB = DC.$								
	Proof:								
	(i) In ΔAMC	C and ΔBMD ,							
	AM = BM	(M is the mid -	point of AB)						
	$\angle AMC = \angle BI$	MD (Vertically	opposite angles)						
	CM = DM (Given)								

	$\therefore \Delta AMC \cong \Delta BMD (By SAS congruence rule)$	
	AC = BD (By CPCT)	(2m)
	(ii) $\angle ACM = \angle BDM$ (By CPCT from (i)) (iii) In $\triangle DBC$ and $\triangle ACB$,	(¹ / ₂ m)
	DB = AC (Already proved in (i))	
	$\angle DBC = \angle ACB = 90^{\circ}$ (Given)	
	BC = CB(Common)	
	$\therefore \Delta \text{ DBC} \cong \Delta \text{ ACB} \text{ (SAS congruence rule)}$	(2m)
	(iv) $AB = DC$ (By CPCT from (iii))	(¹ /2 m)
Q.35.	<u>Sol.</u> $\frac{\sqrt{11} - \sqrt{7}}{\sqrt{11} + \sqrt{7}} \times \frac{\sqrt{11} - \sqrt{7}}{\sqrt{11} - \sqrt{7}} = \frac{(\sqrt{11} - \sqrt{7})^2}{11 - 7}$	(1m)
	$= \frac{(\sqrt{11})^2 - 2 \times \sqrt{11} \times \sqrt{7} + (\sqrt{7})^2}{4} = \frac{18 - 2\sqrt{77}}{4}$	(1m)
	$\frac{\sqrt{11} + \sqrt{7}}{\sqrt{11} - \sqrt{7}} \times \frac{\sqrt{11} + \sqrt{7}}{\sqrt{11} + \sqrt{7}} = \frac{\left(\sqrt{11} + \sqrt{7}\right)^2}{11 - 7}$	(1m)
	$= \frac{(\sqrt{11})^2 + 2 \times \sqrt{11} \times \sqrt{7} + (\sqrt{7})^2}{4} = \frac{18 + 2\sqrt{77}}{4}$	(1m)
	$\frac{\sqrt{11} - \sqrt{7}}{\sqrt{11} + \sqrt{7}} + \frac{\sqrt{11} + \sqrt{7}}{\sqrt{11} - \sqrt{7}} = \frac{18 - 2\sqrt{77}}{4} + \frac{18 + 2\sqrt{77}}{4} = \frac{18 - 2\sqrt{77} + 18 + 2\sqrt{77}}{4}$	$\frac{77}{4} = \frac{36}{4} = 9$ (1m)
	Section E	
	CASE STUDY BASED QUESTION	S (4 mark each)
Q.36.	CASE STUDY-1	
	i. Let, the amount contributed by Lata = $\exists x$	
	the amount contributed by Meena = $\mathbf{E} \mathbf{y}$	
	Then amount contributed by Lata and Meena for I	Prime Minister's Relief Fund = $\overline{x}(x + y)$
	\therefore The required linear equation is $\mathbf{x} + \mathbf{y} = 240$	$= \langle (x + y) \rangle $ (1m)

	ii. We have, $x + y = 240$ x = 124, then $y = 240 - 124 = 116$ \therefore the amount contributed by Meena is ₹116. (1m)
	iii. a) $3y = 7$ $\Rightarrow 0.x + 3y - 7 = 0$ is in the form of $ax + by + c = 0$ where, (1m)
	a = 0, b = 3, c = -7. (1m)
	OR b) $(2k - 3, k + 2) \Rightarrow x = (2k - 3), y = k + 2$ 2x + 3y + 15 = 0 $\Rightarrow 2(2k - 3) + 3(k + 2) + 15 = 0$ $\Rightarrow 4k - 6 + 3k + 6 + 15 = 0$ (1m) $\Rightarrow 7k + 15 = 0$ $\Rightarrow 7k = -15$
	$\Rightarrow k = \frac{-15}{7} \tag{1m}$
Q.37.	CASE STUDY-II: (i) a) $S = \frac{8+10+6}{2} = 12cm$ ($s - a$) = ($12 - 8$) = 4 cm, ($s - b$) = ($12 - 10$) = 2 cm, ($s - c$) = ($12 - 6$) = 6 cm (1m)
	Area = $\sqrt{S(S-a)(S-b)(S-c)}$ = $\sqrt{12 \times 4 \times 2 \times 6}$ = 24 cm ² (1m) Therefore, area of the paper used for making each ear of the puppy = 24 cm ² . OR
	b) Let the sides of the triangle be, a = 3x, b = 5x, c = 7x. $then a + b + c = 300 \implies 3x + 5x + 7x = 300 \ cm$ $\Rightarrow 15x = 300cm$ $\Rightarrow x = \frac{300}{15} = 20 \ cm$ $\therefore a = 60 \ cm, b = 100 \ cm, c = 140 \ cm$ (1m)

	Given, $area = 5\sqrt{3} \times perimeter$	
	$\Rightarrow area = 5\sqrt{3} \times 300 = 1500\sqrt{3} \text{ cm}^2 \tag{1m}$	
	(ii) Semi-perimeter, $S = \frac{a+b+c}{2} = \frac{4+4+2}{2} = \frac{10}{2} = 5 cm$ (1m) (iii) Area of the triangle = $18 cm^2$ Let the length of each equal sides be 'a'	
	Area of the triangle = $\frac{1}{2} \times b \times h$	
	$\Rightarrow 18 = \frac{1}{2} \times a \times a$	
	$\Rightarrow 18 = \frac{1}{2} \times a^2$	
	$\Rightarrow 36 = a^2 \Rightarrow a = 6$	
	Length of each equal sides = 6 cm (1m)	
Q.38.	CASE STUDY-III	
	(i) a) Using the identity, $(a - b)^3 = (a)^3 - 3(a)^2b + 3a(b)^2 - (b)^3$ $(4a - 2b)^3 = (4a)^3 - 3 \times (4a)^2 \times 2b + 3 \times 4a \times (2b)^2 - (2b)^3$ $= 64(a)^3 - 3 \times 16(a)^2 \times 2b + 3 \times 4a \times 4(b)^2 - (2b)^3$ $= 64a^3 - 96a^2b + 48ab^2 - 8b^3$	(1m) 3 (1m)
	OR	
	b) Using the identity, $(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ac$	
	$(x + y + z)^{2} = (x)^{2} + (y)^{2} + z^{2} + (2 \times x \times y) + (2 \times y \times z) + (2 \times x \times z)$	(1)
	$(9)^{2} = x^{2} + y^{2} + z^{2} + 2 [xy + yz + xz]$ $(9)^{2} = x^{2} + y^{2} + z^{2} + 2 \times 7$	(1m)
	$x^{2} + y^{2} + z^{2} = (9)^{2} - 2 \times 7$	
	= 81 - 14	
	$= 67$ (ii) Using identity $x^2 = x^2 - (x + x)(x - x)$	(1m)
	(ii) Using identity, $x^2 - y^2 = (x + y)(x - y)$ $\frac{81}{16}x^2 - \frac{4}{25}y^2 = \left(\frac{9}{4}x\right)^2 - \left(\frac{2}{5}y\right)^2 = \left(\frac{9}{4}x + \frac{2}{5}y\right)\left(\frac{9}{4}x - \frac{2}{5}y\right)$	(1m)
	(iii) Let $x = 10, y = -7, z = -3$ x + y + z = 10 + (-7) + (-3) = 0 $\therefore x^3 + y^3 + z^3 = 3xyz$	
	$\therefore x^{3} + y^{3} + z^{3} = 3xyz$ $\Rightarrow (10)^{3} + (-7)^{3} + (-3)^{3} = 3 \times 10 \times -7 \times -3 = 630$	(1m)